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Engineering applications frequently require the numerical solu-
tion of elliptic boundary value problems in irregularly shaped do-
mains. For smooth problems, spectral element methods have
proved very successful, since they can accommodate fairly compli-
cated geometries while retaining a rapid rate of convergence. Geo-
metric singularities, however, often give rise to singular solutions.
The accuracy of the spectral elerment methods is then degraded,
and they offer no apparent advantage over low-order finite element
methods. In many cases, however, the singular structure of the
solution is known, and its form may be exploited by the spectral
element method. Among the various ways of doing so {through
supplementary basis functions, eigenfunction expansions, and
graded meshes}, the method of auxiliary mapping proves to be
particularly effective. For certain simple cases, the problem is trans-
formed to a coordinate system in which the solution is analytic,
and exponential convergence is recovered. Even when this is not
possible, the singularity is usually much weaker after mapping,
so that other treatments are more effective in the new coordinate
system. In this paper, we study different ways of treating singulari-
ties, and in particular, the method of auxiliary mapping coupled
with the use of supplementary hasis functions. Error estimates are
presented explaining why the combined approach is more effective,
and these estimates are confirmed through a number of numerical
experiments for the Laplace, Poisson, and Helmholtz equa-
tions. ® 1995 Academic Press, Inc.

1. INTRODUCTION

Traditional numerical methods for solving partial differential
equations can be classified as being either local or global in
nature. Local methods, such as finite difference and finite ele-
ment schemes, can adapt to fairly arbitrary geometries, but are
generally of low order so that the cost of obtaining highly
accurate solutions can be prohibitive. Global methods, on the
other hand, are of high order, but suffer from their restriction
to simple domains. The spectral element method, a particular
implementation of the p-version of the k-p method, was pro-
posed to circumvent this restriction. It can accoramodate reason-
ably complicated domains while exhibiting a convergence rate,
with respect to polynomial degree, that is faster than an alge-
braic method for smooth solutions [20].

Shock waves in compressible flow problems, giving rise to
the celebrated Gibbs phenomenon, are perhaps the most notori-

ous source of trouble for spectral and spectral element methods.
(Although some progress in the consiruction of high-order non-
oscillatory schemes has been made [4, 23], the problem is far
from resolved). Singularities are also evident in many incom-
pressible flows; a striking example is flow over an array of
shark-fin shaped riblets in drag-reduction experiments (Fig. 1).
As the width of the riblet tip becomes infinitesimal, the shear
stress grows without bound locally, but this results in an (1)
error globally. These errors are readily traced to the irregularity
of the domain and are manifestations of the basic problems of
using polynomial approximations for nonsmooth functions.

We shall concentrate therefore on elliptic problems, interest-
ing in their own right, and also the main source of computational
effort when the incompressible Navier—Stokes equations are
solved by operator splitting [13]. For such problems, irregulari-
ties may be due to the presence of nonsmooth coefficients
or nonsmooth forcings, or to abrupt changes in the boundary
conditions or boundary shape; whatever their source, the perfor-
mance of the spectral element method rapidly deteriorates. We
shall consider here those singularities that are due to singulari-
ties in the geometry; all other data in the problem is assumed
to be smooth. In particular, we are interested in corner singulari-
ties; typically, first derivatives are unbounded when the angle
is reflexive and second derivatives, when the angle is acute
or obtuse.

By using a multidomain implementation, we do not incur
any real loss of generality or applicability if we focus on a
geomelry containing just one singular corner. We shall take
our domain {) to be an open, simply connected region in R?,
with the corner situated at the origin and with one arm lying
along the positive x-axis, the other at an angle am, 0 < a <
2, in the counterclockwise direction to the first. The boundary
may be decomposed as ' = I'; U T, where T, comprises the
two edges adjoining the vertex and I', = a0\, (see Fig. 2).

In this setting, it is natural to work in polar coordinates (r,
), since in the vicinity of the corner, the solution typically has
the asymptotic form

ulr, 8y ~ erBL(Dx(r, M), ey
where ¢, is some constant, {{#) is a smooth function, and x(r,
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FIG. 1. Oscillations in the shear stress distribution in flow over an array

of shark-fin riblets. The inset shows a portion of the domain, which s extended
periodically in the horizontal direction. The elemenial decomposition is marked
in the inset, and N indicates the polynomial degree used within each ¢lement.

&) is a smooth cutoff function. In this case, it is known that,
for a fixed elemental decomposition, the spectral element solu-
tion u(r, 6), computed with polynomials of degree N in each
elernent, satisfies

lenl 7, 8) — u(r, 8|y = c N ¥, @)

“where ¢, is a positive constant independent of ¥ and & is any
positive number [3]. The estimate (2) is sharper than the usual
spectral error estimates [16], and it precisely captures the con-
vergence rates seen in our numerical experiments. Of course,
when the solution is analytic, the standard estimate specifies
the faster than algebraic rate of error decay.

The power 3 depends both on the equation and on the angle

FIG. 2. The model domain {} consisting of a single corner of angle aw.
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FIG. 3. An example of a spectral element discretization, on a domain
containing two re-entrant comners A and B, using six elements with ¥ = 25,

«; for most problems discussed here, 8 = 1/« and the conver-
gence rate lies between O(N') and O(N?). It is possible,
however, to use a priori knowledge of the value of 8 in con-
structing schemes that improve on this convergence rate. This
has been done in various ways (see [24, 6]), with three main
techniques incorporating: the use of supplementary basis func-
tions; conformal maps to smooth the singularity; and vartous
forms of domain subdivision (k-refinement) to compensate for
the singuiarity. We shall discuss these techniques in more detail
as they arise in the following sections.

The paper is structured as follows. In Section 2, we outline
the key steps in the multidomain spectral element solution of
the Helmholtz problem, without any special treatment for the
singularity. In Section 3, we review the method of auxiliary
mapping, a highly effective technique of improving conver-
gence rates for the corner problem for Laplace’s equation. We
also mention the limitations of the method used alone, and in
Section 4, we discuss the improvements, in the context of the
Poisson equation, that come from supplementing the mapping
with other technigues. In Section 5, we consider the modifica-
tions necessary for the Helmholtz equation, and we close with
a few general observations in Section 6, mentioning the exten-
sion of the techniques described herein to more general (vec-
tor) settings.

2. NUMERICAL PROCEDURE

The numerical solution of the elliptic problem is based on
the spectral element method originally proposed by Patera {20],
which can be viewed as a particular implementation of the p-
verston of the #-p finite element methed. The method proceeds
by first tessellating the domain £} into four-sided macro-sized
elements (see Fig. 3), each of which may then be mapped to
the unit square by a smooth or isoparametric mapping. Within
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each square, the problem is solved using an N X N spectral
approximation, formulated through a tensor-product Lagran-
gian polynomial representation using the Gauss—Lobatto—
Legendre interpolation points, C® continvity is enforced
strongly at element interfaces, and weak C' continuity follows
from the problem statement.

Consider the solution of the Helmholtz equation in two di-
mensions,

Vi — Au = f, 3)
subject to Dirichlet boundary conditions, w = 0 on 9{}. Let
P(Q)) be the space of functions which are (i} tensor products
of degree N polynomials in x and y on each standardized ele-
ment, (i1) C° on {), and (iii) vanish on 4{). The approximate
solution wy, is the unigue member of Py({}) that satisfies the
weak form of the problem

JQ(VMN'VU + Aye + ) d€ =0

for all test functions v € Py({}). It is known that, if u € #°({})
and if f & (1), the numerical solution satisfies

flot — sy = (N7 ||atllaerear, + N7 Flbena)s (4)

where ¢ is some positive constant [16]. Consequently, when
the elemental subdivision is fixed, the error decays faster than
any power of N for solutions that are analytic in x and y. We
shall be primarily interested in this p-response, as opposed to
the error as a function of elemental discretization (see [11, 14}
for a description of the latter).

A multidomain approach is appropriate in the presence of
nonsmooth boundary data since it permits specific treatments
to be applied locally; it is practically essential for complicated
geometries such as the one shown in Fig. 3, The domains we
shall use are disjoint and nonoverlapping, and the solutions
are computed independently on each, coupled only through
interface conditions, The coupling is based on the iterative
relaxation procedure proposed by Funaro, Quarteroni, and Za-
nolli 9] for elliptic problems, in which a sequence of Dirichlet—
Neumann problems is iterated to convergence. Continuity of
normal derivatives is enforced at each step, and the iteration
proceeds untit C° continuity is achieved to some prescribed
tolerance. The solution procedure can be modified to allow
parallel implementation as in [12]. If the Helmholtz problem
is solved on two adjacent domains £}, and (), having common
boundary T',, the solution, at the m® stage, is made up of a
computation step, with the domains treated independently,

Vzbﬂn e )\ul :f in Q]

i &)
Vi — Ak =f in{d,,

FIG. 4. A domain containing a re-entrant corner at the origin, with ¢ =
%, divided into nine four-sided elements.

followed by a patching step entailing communication between
the two processes

Wt =&+ (1 — &l
auf  dup!

g on

on F]_g.

(6)

The relaxation parameter & is chosen dynamically to accelerate
the convergence. Specifically, it is the unique real minimizer
of the error between successive iterates and is computed as

_ fef, el — ef)
leg — el

o )]

where (-, -) denotes the usual .2 inner product and where e?
denotes the difference between successive iterates e = uf —
"' on the relevant subdomain ();, The compuiation—
communication tasks (5)—(6) are iterated until the solutions on
the two domains agree to within some prescribed tolerance
along the interface (we used 1072 in our experiments}.

For convenience, we have chosen our singular domains to
be circular sectors about each singutar corner. Such a domain
may be broken into quadrilateral elements by the discretization
in Fig. 4, which still maintains spectral convergence rates. The
Neumann conditions in the patching procedure were imposed
in the corner domains and Dirichlet, on the external (back-
ground) domain.

3. THE METHOD OF AUXILIARY MAPPING

Laplace’s equation

Viu=0 (8)
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in two dimensions serves as the primary test for methods de-
signed to reduce singular effects. The problem has been dealt
with successfully by various techniques, all of which make use
of the well-known asymptotic behavior of # as r — 0 [2, 19].
The general solution of (8) in the neighborhood of a corner
can be expressed as

L

u(r, 6) = 2, adh(r, 9),

=0

where the coefficients g, are determined by the (global} bound-
ary conditions and where the fundamental solutions ¢s(r, &)
are given by

rke sin(E 0)
o
r"’"(ln r sin(E 6) + 6’(:05(E 9)) ifE €Z (9
o 7" a

fork=1,2,...[10]. The solutions in this sequence are increasing
in regularity, with y(r, 6) € FH*="'~2({}) for any real £ > O.
Moreover, as the intruding angle becomes sharper, the regular-
ity of each basis function generally decreases and, as a result,
so does the overall convergence rate.

We shall, unless stated otherwise, assume Neumann or
Dirichlet boundary conditions along I';, defined such that no
singularity is introduced away from the corner. We shall also
assume that the solution vanishes along the wedge walls,

| i ¢z
dlr, 8} =

ulp, = 0. (10)
This ne-slip boundary condition implies that the functions in
(%) involving logarithmic terms do not contribute to the solu-
tion, and

ur, 6) =, akr"’“sin(E 9). (n
k=1 24

The crucial observation now is that the simple mapping z =
&% which is conformal at all points save the origin, renders
the fundamental solutions analytic in terms of the new variables.
Under this map, the original domain of Fig. 1 in the z = re®
plane is transformed to a semicircle in the £ = pe™ plane (see
Fig. 5) and the solution in terms of the new variables,

o

u(p, §) = 2, aypsin(kep),

k=0

can be numerically approximated without the effects due to the
corner singularity.
The auxiliary mapping technique, used as early as 1965 for

7z = £
———
i
5
z=r¢’ t=p &*

FIG. 5. Mapping of the subdomain containing a singular corner to one in
which the corner and its effects have been removed.

solving the eigenvalue problem Vi — Au = 0 [21], was first
applied to finite ditference solutions of the Laplace and Poisson
equations in 1967 [17]. In these early experiments, however,
the mapping was applied globally, so that the original domain
typically transformed into a peculiarly shaped geometry and,
more importantly, the technique was limited to problems with
only one singular corner. A multidomain implementation, with
isolated treatment of each corner, was developed for the p-
version of the A-p method by Babuska and Oh, using wedge-
shaped elements [2], and extended by Cai, Lee, and Oh to
couple finite element solutions on singular domains with spec-
tral solutions computed on rectangular domains free of singular-
ities [5]. Here we use spectral element strulations in all do-
mains, with the appropriate conformal mapping applied in those
which contain a singular corner. The changes to the usual
spectral element code are modest. The elemental discretization
is normally specified through four corner points; these and the
curvature information are mapped straight away to £ space,
where a regular discretization and solution is then performed.
The normal derivatives are returned to physical coordinates for
the Zanolli patching procedure, and the grid is mapped back
to physical space for cutput purposes.

ExampLE 3.1. We begin with an example of Babuska and
Oh [2], solving Laplace’s equation on an L-shaped domain
with boundary conditions as shown in Fig. 6. A two-domain
decomposition was used to compute the numerical solution,
with the exterior domain {}, comprising the six large elements
furthest from the origin and with the interior domain (1, the
nine elements closest to it. The mapping treatment is only
applied to {),. In this case, the exact solution is not known so
we use a high resolution (N = 27) numerical solution as our
benchmark. Error plots with and without mapping in the exterior
domain £}, and in the interior domain {}, are shown in Fig. 7.
Without mapping, the leading order term in the solution be-
haves as r*?, and the theoretically predicted convergence is
O(N~**7"). According to a least squares fit for the exponent,
we find [{# — up|y' = 1.089N7'5" in the domain containing the
singular corner, and this contaminates the solution in the ex-
terior domain as well. With mapping, the error appears to decay
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FIG. 6. Domain and beundary conditions for the solution of Laplace’s
equation.

at an exponential rate; a fit of jJu — uyfe = 0.426e7 295 ig
calculated in the interior domain, and a very similar figure is
obtained for the external domain as well.

It is easy, however, to cook up preblems in which the map-
ping actually has detrimental effects, for instance, when the
solution is smooth in z-space. Components that are smooth in
the original coordinates become (weakly)} singular through the
mapping. What has been neglecied up till now is the behavior of
the coefficients a, which are determined by the global boundary
conditions. While it is true that the representation (11) con-
verges uniformly to the exact solution as long as Neumann
boundary conditions on I, are in LXT,), it is not necessarily
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FIG.7. ¥, errors for the solution of Laplace’s equation on the L-shaped
domain, with and without auxiliary mapping. In the mapped case, the mapping
was applied only to the domain containing the corner.
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FIG. 8. Domain and numericaily computed solution for the problem
Vi = 1. whose exact solution & = »(y — 3x)/2 is analytic.

true that the coefficients decay quickly. Since there is a certain
duality between smooth boundary conditions and smooth driv-
ing forces (see Appendix A), we shall examine this deterioration
in the context of the Poisson equation.

4. POISSON’S EQUATION

The situation becomes more complicated when a forcing
function is introduced as in Poisson’s equation,
Viu = f(x, y). (12)
When f is a smooth function, it follows by the shift theorem
that # must have some smooth component in addition to the
singular structure of the homogeneous solution. The conver-
gence achieved through auxiliary mapping is no better than
algebraic, because this regular component becomes irregular
upon mapping. In terms of the new coordinates, the equation
has a singular forcing function,

Vi = &2 F(x(p, 9), ¥(p, $)), (13)
and the solution must also exhibit some irregutarity. In view
of the spectral element convergence estimate (4), it follows
that the convergence is aigebraic, but this estimate is not optimal
and, given the form of singularity, we infer from (2) the im-
proved estimate

lle = nulercgy = cN-*o= (14)

for any & > Q.

ExamrLE 4.1. Consider what happens if we iry to solve
V2 = 1 on the domain shown in Fig. 8, where the re-entrant
corner at the origin has @ = 1 + tan™' 3. We decompose the
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FIG. 9. Relative %, errors for Vi = 1 when 1 = y(y — 3x)/2, for the
exterior demain {3}, and the interior domain {3,.

domain into two: {}; consists of the six large elements away
from the corner; {1, is the nine-element circular sector near the
comner. The exact solution is u = y(y — 3x)/2, which is analytic
in x and y but which has leading order p** = g™ as p — 0
in the &-plane. The expected error decay after mapping in £,
is therefore O(N~**), and we compute a decay rate of O(N %),
whereas we obtain exponential convergence if we do not apply
any treatment (Fig. 9).

ExampLE 4.2, A more typical scenario comes from solv-
ing V21 = | on the same geometry as in the above example, but
using boundary conditions similar to those used for Laplace’s
equation of Example 3.1. In this case we decompose the domain
into three subdomains since both corners at (0, ) and (—1,
—3), give rse to singolar effects (Fig. 10). We let £}, be the
background domain as usuval, £}, the sector close to the origin,
and £, the sector with vertex at (—1, —3). In this case the
exact solution is not known, so errors were calculated using a
benchmark solution computed with N = 27. Although the map-
ping is highly beneficial, it is not sufficient to obtain an exponen-
tial rate of convergence (Fig. I1). The decay of the coefficients
in the asymptotic expansions {11) is only algebraic.

The natural thing to do is to try to separate the component
of the solution that is regular in the z-plane from the one that
is regular in the &plane. The approach taken by Wigley in
finite difference solutions of the Poisson equation was to obtain
an estimate of the coefficient of the leading singular terms and
to then subtract its contribution out of the boundary values
[26]. The solution/subtraction process was iterated until the
remaining boundary values were sufficiently smooth to allow
an accurate finite difference calculation [27, 28]. Another ap-
proach is to supplement the usual polynomial basis with the

un=1
3 —
2
u.n=0
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: 7
un=1 0
\/ u=0
-1
u=0
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-3
-3 -2 -1 [+} 1 2 3

u.n=0Q

FIG. 10. Domain and boundary conditions for the problem Viu = 1-of
Example 4.2.

most singular basis functions. However, the trial functions are

no longer orthogonal, and the matrix system to be solved (possi-

bly in a least-squares sense) becomes increasingly ill-condi-

tioned as more singular basis functions are added. Nevertheless,

experience shows that using just one or two singular functions

is sufficient for dramatic improvements in the convergence,
First consider the case of constant forcing,

Viu=p

for some constant w. The leading singular behaviour at the
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FIG. 11. Relative #, errors for the problem V?u = 1, of Example 4.2, for

each of the domains £}, £;, and £}, is the case where (a} no mapping treatment
has been applied to any of the domains and (b) mapping has been applied on
(lq and Q).
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TABLE 1

Leading Asymptotic Behaviour for the Singular Selution as r — 0

Angle Leading behaviour
0<a<4 2, then ¢
o=} " log r, then 7%, then r*
l< <} Fa then r?, then r¥@
a =1 7, then r*3, then ? log r, then r?
ica=<2 rHe then r¥e, then r¥=,

origin will generally be « ~ #2, and the error will behave as
e = waflsery ~ N~2'%. What we note is that augmenting the basis
is much more effective after applying conformal mapping. In
this case, the leading singular behaviour will be u ~ r?, and
the error behaves as |l — upllwin, ~ N

For V2 = u, on the prototype domain, the solution has the
leading order behaviour listed in Table [, where the contribu-
tions due solely to the forcing (when the boundary conditions
are homogeneous) are underlined, These results are compatible
with those results given in [18]; the important thing to note is
how the presence of the forcing complicates the treatment of
the singularities. Suppose & # 4, 8. Then u € %'~ on the
unmapped domain, and the convergence rate is ||u — wuyl], ~
N-%=2 On the mapped domain, # € #>*'™* and |ju —
|, ~ N~**7= I, in addition, we subtract out the now-singular
component, the remaining solution is analytic and we expect
exponential convergence. Consequently. the recommendations
would be (in order of preference):

o < 1/V2: Map and subtract; unmapped; mapped.
a > V2 Map and subtract; mapped; unmapped.

@ = 4 Unmapped and subtract; mapped and subtract; un-
mapped; mapped.

a = § Map and subiract; mapped; unmapped and sub-
tract; unmapped.

For example, for o > 1/V2 with o # &, the appropriate action
would be to make the transformation & = z"%, subtract the
contribution of the leading singular term (proportional to p*
as given in Appendix A) from the boundary condition, solve
the mapped problem, and return to the physical space z = &9,
adding back the subtracted function to the solution. The map-
ping alone increases in power as &« — 2, and the advantages of
subtraction become weaker, even though the method formally
achieves exponential accuracy.

4.1. Generalization for Variable Forcing

A general expression can be found for the solution of Pois-
son’s equation as in [24], under mild regularity restrictions on
f(x, ¥). Writing f = f(r, ) as

£, 0) = 3 40 sin (5 e) =53 jur'sin (E 9),
k=1 23 o

k=1 1=0

it follows that

ulr, 03 = wir, 8) + > r¥ sin (g 9), (15)
k=1
where
wir, 8) =, > futhu(r, 6)
k=1 t=0
ot . k
m!‘”z sm (‘a 9), ki #= 1+ 2,
el r, 0) = | i
— iR in |— =/+2.
ok - l)r In 7 sin (a 9), ki =1

It is readily verified that V2w = fand, hence, Vu = f. Moreover,
it is seen that u(r, &) = O on 6 = 0, e, However, the expansions
(15} are not favored for computational purposes since they are
slow to converge when, say, f is analytic in x and y. The
eigenfunctions vanish on the wedge walls, while f generally
will not. For instance, the expansion for f = | is
A== (=1 = 0(%)

which is slow; moreover, the convergence is not uniform and
one ¢could expect to see the Gibbs phenomenon near the bound-
aries. Rather than expand the smooth component in terms of
the mapped variables, one may try to find explicitly the function
w that satisfies V2w = f and vanishes on the wedge walls (see
Appendix A) and subtract it from the computation procedure.
Doing so does not guarantee spectral convergence {due to the
nonhomogeneous boundary conditions on I';), but numerical
evidence indicates these effects are milder.

It should be remarked that very often, one does not have an
explicit expression for the forcing function; rather it is specified
through numerical point values. This is the case, for instance,
when the equation arises in the numerical solution of the
Navier—Stokes problem, where a splitting formulation gives
rise to a pressure equation of the form

Vip = f(x, ¥)

where f(x, v) is related to the velocity field. Assume that f(x,
v) is reasonably smooth. In the spectral element approximation,
it will have a bivariate polynomial expansion in terms of x
and y. The leading coefficients of this expansion are readily
calculable, and from these the appropriate subtraction can be de-
termined.
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FIG.12. The spectral element discretization, with N = 27, of the geometry
for the Helmholtz example 5.1

5. HELMHOLTZ EQUATION

We shall consider the Helmholtz equation

Viu — Au = f(x, v), (16)
A a constant, on the domain ) subject to the usual boundary
conditions ulr, = 0 and ul, = g(x, y). The solution, with
arbitrary analytic forcing and boundary conditions, is of the
form

u(z,7) = U(z, 7, 2, 7V, In(z), In(Z)),

where U is a multivariate series, and the terms involving z'°
are the ones that will usually be the source of slow convergence.

There are several potential strategies for increasing the rate
of error decay. The conformal mapping described in the two
preceding sections is an effective way of improving the conver-
gence rate here as well. The auxiliary mapping z = £* converts
the Helmholtz problem (16) to

Viu — A’ u = ol

with boundary conditions expressed in terms of the new coordi-
nates. Incorporating this mapping in the linear solver simply
requires multiplication by the variable coefficient o~ when
computing the mass matrix and the drive force.

ExampLE 5.1. To begin, we illustrate the effectiveness of
mapping with the Helmholtz equation

Viu—u=1

on the circular sector with radins B = 1 and o = &, which
defines a very sharp re-entrant corner (Fig. 12). Homogeneous

boundary conditions are imposed on all sides. The exact solu-
tion is not known in this case, so we use N = 27 as our
benchmark and estimate the errors for N = 3, 5,7, ..., 17. Since
the forcing is of the form p?2, by the shift theorem, the best
leading order term for u(p, ¢) will be p** and the error is
expected to decay as N**7°. The results, on the nine-element
domain shown in Fig. 12 are in good agreement with theoretical
predictions (Table II).

Unlike Laplace’s equation, the fundamental solutions for
the homogenecous Helmholtz problem do not gain analyticity
through the mapping. The general solution of the problem

Viu—Au=0 (17)

ulr, =0, ulr, = g(x.y).

in the vicinity of the corner has the form

o

> ady NV —Ar)sin(klaB), A <0,
k=1

u(r, 8) =

oo

S adueVAr)sin(klag), A >0,
k=1

when k/ae # 7. Here J and / represent the Bessel and modified
Bessel functions of the first kind, respectively; the functions
of the second kind do not appear in the expansion owing to
the vanishing boundary conditions. Upon mapping, the solution
has the form

u(p, &)y =X, apt sin(k@)(E cjpm)

k=1 \j=0

with leading singular term of order p'**. Consequently, the
estimated convergence rate is :

lu = wlle = O340,

which is very fast, although algebraic, for @ > 1.

Mapping, quite effective alone, is even more so when used
in conjunction with other treatments such as supplementary
basis functions whose use goes back to 1967 [8]. Supplementary
functions of the form r* sin(k/e®) have been used in finite-

TABLE 1T

Error Decay for the Helmholtz problem Vi — « = 1 on the
Circular Sector (o = #) with Homogeneous Boundary Conditions

Method Estimated error decay Experimental error decay
Unmapped [ — uyll = 10 flu — syl = 0.0501626 N2
Mapped ot — seyll = e85 [li — sl = 2.31877 N-H1o0s
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FIG. 13. Relative %, errors for Viu — u = 0 with & = 3, mapped and unmapped treatments with and without subtraction.

element solutions of Laplace’s or Poisson’s equation [25, 19,
24, 6,1 where they extend globally across elemental interfaces
with various blending strategies ensuring decay away from the
singular corner. Li [15] used a singular basis function expan-
sion, coupled with a domain decomposition for the homoge-
neous Helmholtz equation. For spectral approximations, supple-
mentary basis functions have been used by Schultz, Lee, and
Boyd in solving the biharmonic equation in reference to the
driven cavity problem {22], finding that only one or two supple-
mentary functions are needed since the less singular terms can
be well approximated by the usual Chebyshev basis.
Let us denote by

{n(x, ¥), dolx, ), dalx, ¥), ..}

the usual polynomial basis, and by

{’M(L y)': ltl}l(x! y)v #IJ(I’ _}’), }

the additional singular basis function to be included. Let us
worlc with the homogeneous problem and assume that A > 0

(if A < 0, the analysis is the same, with the Bessel function J
replacing the modified Bessel function 7). Then, in the neighbor-
hood of the singularity, the solution has the form

u(r, 6) = f‘, ady(VAr) sin(k/ad)

o

=3 by sin(k/a8),

k=1 1=
with leading order singular terms
),.].'a.' r2.'u (a > %)’ r3.'a (ﬂf = 1), r4n‘a (05 = %)’ rl!a'}-l, s

By including just a few of these, we can significantly improve
the convergence rate. In Table III, we list the effects of removing
0, 1, or 2 singular functions, giving the leading singular term
of the remainder, and the expected convergence rates.

Now consider supplementing the usual basis in the mapped
domain. The local behaviour of the solution is given by
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TABLE III

Leading Singular Behaviour and Convergence Rates after
Removing the Leading Singular Terms

Leading
singular Convergence
Number Basis function term rate
0 — plia N-Ye
3 ro gin( /o) e Nt
Ll VAR sin(l/a6) e -
2 {r' sin(1/a8), F¥* sin(2/eb)} S Y
{LWVAR sin(Ual), LV AR sin(lia@)} e N6l
w0 o
u(p, $) = ¥, adu VAP sin kg = 3, 3 gt sin k¢,
=1 k=11=0

50 the leading singular terms are

pl+2a, p2+2a(a = %)’ pl+4a, p3+2a(a = 1)’

The effects of adding auxiliary functions to the basis are shown
in Table IV,

The conclusion is that augmentation is more effective in the
mapped domain and that only one or iwo basis functions need
to be included to obtain very fast convergence.

There are two ways of proceeding: by incorporating the
singular functions directly in the discrete approximation expan-
sion, or by explicitly removing the most singular terms and then
solving for the smoother part. If we follow the first approach and
discretize the problem with the augmented basis, we continue
with the variational approach generally employed by the spec-
tral element method. The preferability of the variational formu-
lation, as opposed to patching, is clear for these problems, since
explicit enforcement of C* matching is absolutely inappropriate.
The variational statement for the Helmholtz problem is

TABLE IV

Leading Singular Behaviour and Convergence Rates after
Removing the Leading Singular Terms after Mapping

Leading
singular  Convergence
Number Basis function term rate
0 — ey N
| pl+2a sin ¢ p2+2u N4
Lo VApY) sin & g Nt
2 {p"** sin ¢, 27 sin 2} pre N2t
LV sin @, Lo(VAg®) sin 2¢)  pi*= o

f J' V- Vudédé,

+A j j P uvdbdg = f f P Sodgds,

Let us write

u= E d’j(gls &)+ E (&), &),
=1 n=1

where ¢, .are the usual Gauss—-Legendre—Lobatio poly-
nomial basis (after mapping to the standard square) and where
yt, are the (fewer) singular basis functions. Recall that for
Gauss—Lobarto-Legendre  integration of the function
F(x) € €™ [—1, 1] has the error term OQ{F* %(x*)), where
—1 = x* = 1, using an integration rule of degree greater than
. Open formulas are usuaily more effective when the singular
peint lies at the domain endpoint, although the Gauss—Radau
formula, for instance, still has the same formal order of conver-
gence. It is advised to form the inner products analytically when
possible [24], since these are not smooth. The #-dependence and
inner products of the form (¢, #) can possibly be computed
by high order interpolation. Second, there is the question of
inverting the stiffness matrix. If many singular functions are
used, the matrices become ill-conditioned as the complete basis
{¢1, b, .oy @y W, U, .o, Y} is nearly linearly dependent.

An alternative method is to explicitly subtract out the leading
singularity, as done by Schultz, Lee, and Boyd [22]. Whereas,
for their problem the coefficients of the leading singular term
were exactly known, in our case they must be estimated numeri-
cally. We have the asymptotic behaviour

w="Vay i adu AP sin ke
k=1

On the semi-circle, the coefficients are determined by the
boundary condition ulr = g(&).

adua(VARY = V27 f "8(¢) sin ke,
and for the leading singular term
ailyo (VAR = V2 [ g() sin pd.

Let # = u, + 4, where , has ieading order term ¢#*** and

in(p, ) = V2ina§,(VAgh) sin ¢

_ _ZF[I]IQ(\/XP‘I)

wls (Wej[ﬂgw) sin ¢d¢}sind)
1
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TABLE V

Error Decay for the Helmholte Problem V24 — & = { on the Circular
Sector with ¢« = § with Boundary Conditions [T, = 7 sin{f — 3m)

Method Estimated error decay Experimental error decay

e~ uy o = NS
[ ~ uy |l = eN 72

No eatment
Subtract out leading

”u T Hy "m 22 (0.19544 N = 184602
||u T My Ilw = (1.30958 N3

term
Mapping s = unlle < eN77 Ju = uy |l = 24.5782 N 8205
Mapping and o — se o = N7 |l — ity o = 13070,8 p-125
subtraction

is the most singular term. Instead of solving the given problem,
we solve

Vi, — Au, = 0,

Ma‘|l—‘J = 0! Uy

2 (= .
=g ¥l =g | a(4) sin gdo,

and add a,¢, to the numerical result to obtain the desired solu-
tion u.

ExamprLe 5.2. (Table V).
problem

We solve the homogeneous

Ve —u=0

on the wedge of radius | and angle $7, subject to the boundary
conditions ulr = 0, and

ulp, = & sin(@ — 3m) = & ¢ sin(i(¢ — m)).
Then

a1y = V2In % |7 6% sin(é — m) sin(¢) dp~
—4.42865033179881902.
We therefore solve the problem
Vou, —u, =0
wglr, = 0,
ulr, = 62 sin(8 — Sn/4)
+ 4.42865033179881902 sin(4/5 9).

We do observe an improvement in the convergence rate using
the subtraction method. The point is that the error decays so
quickly through the mapping alone, that the benefit is question-
able. The errors in Table V were computed vsing peints lying
within a radius 0.4 of the origin in the relevant domain and are
based on all cases N = 3, 5, ..., 17, compared with an N = 27

benchmark solution. The maximum point-wise error between
the mapped solutions, N = 27, with and without subtraction
was 25427 X 107" at & = & = /2. The results are much
less reassuring in the unmapped case, where the maximum
error is 5.0152 X 107 at the point x = —9.9871 X 107, y =
2.4111 X 1073 The error occurs near the singular corner without
the mapping and on the edge of the domain with it.

We comment that the mapping alone is highly effective in
this case; its value 1s slightly weaker as « is decreased.

6. CONCLUSIONS

In this paper we have presented some methods for obtaining
high-order solutions of elliptic boundary value problems in
domains containing singular boundary data. These algorithms
are develaped in the context of spectral element methods which,
for smooth solutions, have convergence rates that are better
than algebraic, but which lose this advantage in the presence
of singularities. The main idea here is to weaken the singularity
through auxiliary mapping and then to augment the spectral
element basis with singular basis functions.

This basic idea is easily generalized. If one has a treatment
for a singularity of the type considered here, it may be more
effectively applied in the mapped coordinate system where the
singularity is less strong. The use of graded meshes, for exam-
ple, is one such treatment where the degree of gradation (and
hence the cost) is reduced by operating in the semicircular &
domain [7]. The same is true when the graded meshes are
combined with polynomials of varying degree, where the total
number of degrees of freedom required decreases with the
strength of the singularity [1]. Moreover, this approach is not
restricted to the equations shown here, but is applicable when-
ever one knows the leading term of the asymptotic expansion
of the singular solution.

APPENDIX A

The duality between Laplace’s equation with smooth bound-
ary conditions on I'; and Poisson’s equation,

Vi = fx, y),

(18}
ull"l = 01 “!rizg(x,)’),
where fis smooth, can be seen by writing the solution of (18)
as ¥ = v + w, where v is a singular solution of Laplace’s
equation while w is a smooth solution of Poisson’s equation.
We begin with the simplest case, when the forcing is some
constant value u,

Viu=pu

and the solution vanishes along T';. Following [18], we have
that, for o # 1/2, 3/2,
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2 _ =
u(r, 8 =£4E(l M) + Eakr"’“ sin (-E 9), (19)

cOs o =

so here w(r, ), the first term, is analytic, while v, the singular
sum, is in ¥€Y=7177(Q) for any £ > 0. When o = dor & = 4, the
“smooth’* solution w actually contains logarithmic terms, since

2
ﬂﬂ (cm + 2 In rsin(26) + (26 — am) cos(26))

+ Z ar¥® sin (?i 9),

k=1

u(r, &) =
(20)

respectively. The coefficients a; in (19) and (20) are determined
by the global boundary conditions.

In general, for f(x, y) € #"({}), u can be decomposed as
u=w + v, where w(x, y) € H"X) and v(x, y) = 2, culilx,
y) with ¢ denoting the fundamentai solutions (9) [10]. Now if
w is a solution of Poisson’s equation that vanishes on the wedge
walls, it follows that v satisfies Laplace’s equation, vanishes
on the wedge walls, and

vlr, = 8(6) = Wy,

Using the auxiliary mapping technique, v can therefore be
computed with spectral accuracy if U|r2 is such that the solution
is smooth in the mapped variables.

To find w, let /47, denote differentiation in the direction
tangential to the wall

ak ak

F
art arf| oty art

art  ark

1
#=0 f=ar

Then w € F~2({}) when w is such that

o o
Lo = L
[arf v ark f:lr

for k = 0 ... m. A direct way of satisfying these compatibility
conditions is to find w such that V'w = fin £ and w = O on
the walls. For certain forcings, this is easy. For instance, when
p#0

2D

f: rP*2 — W(r, 9)
1, (1 _ cos(p = pi2am)
P cos(p/2am)
f=rtsin(2pd — am) o w(r, §

= 3%2 r? sin(p@ — p/2am)(cos(p/2am) — cos(pd — pl2am))).
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To generalize, let us assume that the forcing is analytic in x
and y, with expansion

F, ) =2, D dumx™y™ (22)

m=0 n=0

If we make the ansatz

Wi, ¥) = 2 2, Guy™(y — cx)',

m=0 n=0¢

(23)

then w is analytic, and w|r, = O if we choose ¢ = tan(eer). We
shall assume that ¢ # 0, that is, e £ 0, 1. These cases correspond
to the uninteresting situation when there is no corner at all, and
hence no singularity. Then we must find {@,.} so that V’w =
F. Two useful examples are

Gz = 2¢(3 — )

pe=3FC e=fy=x (24)
172003 — €%

e =0 otherwiseJ

PRSI S,
2T 23 -¢h

g = b= y) =y (25)
21 (3 _ cz)

D = 0 otherwiseJ

Under what conditions can we find an expansion of the form
(23) given a forcing of the form (22)? For convenience, let us
introduce new independent variables (x, y) «* (£ ) through
the invertible transformation n = y and § = y — cx. Then the
Laplacian of

W= S e

m=1n=1

can be written as Viw = Sy 2o [(m + 1)m + i, +
2m + V(1 + Dagenn + (@ + D0+ D01+ Dagul 1€
if we define @, = ag, = 0 ¥m, n € Z. Now f(x, y) can be
written as

SED =22 b "E

m=0 n=0

and equating coefficients of like powers in V?w and f requires
satisfying the linear equations
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0 1)0m + Dtz + 20+ D01+ Dl 0
+{c*+ Din + 1)n + Dapu2 = b
Ym, n =0,

To determine whether the system (26) is nonsingular, we
impose an ordering according to the degree of the monomial
&'y, 1.e., according to the sum of the subscripts 5 = m + n.
In this way our system decouples into independent blocks of
dimension (s + 1) X (s + 1), for s = 0, 1, .... Consider a fixed
5 and then impose a subordering with m = 0, 1, ..., 5. The
linear system to be solved is Ma = b, where M is the
{s + 1) X (s + 1) tridiagonal matrix defined by

E+FDs—m+DHs—m+2), I=m—1,
Muy=4{2m+ )s—m+1), I=m,
(m+ 1)(m~+ 2), [=m+1,

with 0 = m, | = 5. This block corresponds to matching the
degree s terms in the Laplacian and in the forcing; the relevant
term in the solution ansatz are of degree s + 2.

To compute the determinant of the matrix M, we let M; be
its upper left (j + 1) X {(f + 1) block for j = 0, ..., s. The
corresponding determinant D; satisfies

D;=2(j+ 1)s —j+ DD — (€4 Dis = j+ 1)
(s —j +2)j(j + DDy,

Letting 3, = Di(s — j)/(j + 1)}, we find that 8, satisfies the
recurrence relation

B =28~ — (c* + DB

Using the appropriate starting values 8, and 3, we have
then that

g = (—"—I-L)J:(S—“L}l (2¢ cos(j tan~' ¢)

+ (1 — ¥ sinj tan™' &),

and the matrix M = M, is singular if D; = 0, or, equivalently,
if B, = 0. Recalling that ¢ = tan(oer), this is the case if
2 tan(ar) = (tan’(em) ~— 1) tan(sam). 27)

Equation (27) capnot be satisfied if tan{am) = X1, so we can
divide through by (tan’(aw) — 1) and thereby obtain

—tan{2a7) = tan(saew) (28)

as the condition for singularity of the matrix. Equation (28) is
satisfied in &« = k/(s + 2) for k € Z, the case physically
corresponding to the alignment of £° with the % axis. These
results are compatible with those of [10] and are due to the
incompleteness of the regular basis. The logarithmic terms
are missing.
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